Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the equation of the plane through the intersection of the planes $ \overrightarrow{r}.\quad(\hat i+3 \hat j)-6=0\; and\;\overrightarrow{r}.(3\hat i-\hat j-4 \hat k)=0,$ whose perpendicular distance from origin is unity.

Can you answer this question?

1 Answer

0 votes
  • Perpendicular distance of a plane from the orgin is $P= \bigg| \large\frac{d}{\sqrt{a^2+b^2+c^2}} \bigg|$
  • Equation of the plane passinfg through the line of intersection two plane is $(a_1x+b_1y+c_1z+d_1)+\lambda(a_2x+b_2y+c_2z+d_2)=0$
Let the equation of the plane passing through the line of intersection of the planes $x+3y-6=0$ and $3x-y-42=0$ be
$ x+3y-6+ \lambda (3x-y-4z)=0$
$ \Rightarrow x(1+3\lambda)+y(3-\lambda)+z(0-4\lambda)+(-6)=0$
It is given that the perpendicular distance of the above plane from origin is unity
(ie) $ \bigg| \large\frac{d}{\sqrt{a^2+b^2+c^2}} \bigg|=1$
Where $a=1+3 \lambda,\;b=3 -\lambda,\;c=-4 \lambda,\;d=-6$
$ \Rightarrow \bigg| \large\frac{-6}{\sqrt{(1+3\lambda)^2+(3-\lambda)^2+(-4\lambda)^2}} \bigg| = 1$
On simplifying we get,
$ \Rightarrow \bigg| \large\frac{-6}{\sqrt{1+6\lambda+9+\lambda^2-6\lambda+16 \lambda^2}} \bigg| $
$ \Rightarrow \bigg| \large\frac{-6}{\sqrt{26\lambda^2+10}} \bigg| = 1$
$(ie)\;\sqrt {26 \lambda^2+10}=6$
Squaring on both sides we get,
$26 \lambda^2+10=36$
$\quad\quad 26 \lambda=26$
$\qquad\quad \lambda^2=1$
$\qquad\quad \lambda=\pm 1$
Substituting the values of $\lambda$ in equ (1) we get when $\lambda=+1$
or $2x+y-4z-3=0$
When $\lambda=-1$
or $x-2y-2z+3=0$
answered Jun 12, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App