Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

If the directions cosines of a line are $k,k,k$ then

\[(A)\;k\;>\;0\qquad(B)\;0\;<\;k\;<\;1\qquad(C)\;k\;=\;1\qquad(D)\;k\;=\;\frac{1}{\sqrt 3} or \frac{-1}{\sqrt 3}\]

Can you answer this question?

1 Answer

0 votes
  • The sum of the squares of direction cosines is one.$(ie) \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1$
Given that the direction cosines of a line are $k,k,k$
The value of $k$ is $\pm \large\frac{1}{\sqrt 3}$
We know the sum of the squares of the direction cosines is one.
$(ie) k^2+k^2+k^2=1$
$k=\pm \large\frac{1}{\sqrt 3}$
Hence the correct option is $D$
answered Jun 12, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App