logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

If the directions cosines of a line are $k,k,k$ then

\[(A)\;k\;>\;0\qquad(B)\;0\;<\;k\;<\;1\qquad(C)\;k\;=\;1\qquad(D)\;k\;=\;\frac{1}{\sqrt 3} or \frac{-1}{\sqrt 3}\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The sum of the squares of direction cosines is one.$(ie) \cos ^2 \alpha+\cos ^2 \beta+\cos ^2 \gamma=1$
Given that the direction cosines of a line are $k,k,k$
The value of $k$ is $\pm \large\frac{1}{\sqrt 3}$
We know the sum of the squares of the direction cosines is one.
$(ie) k^2+k^2+k^2=1$
$=>3k^2=1$
$=>k^2=\large\frac{1}{3}$
$k=\pm \large\frac{1}{\sqrt 3}$
Hence the correct option is $D$
answered Jun 12, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...