Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

If $x$ and $y$ are connected parametrically by the equations given in $ x = \cos \theta -\ cos 2\theta, y = \sin \theta -\ sin 2\theta $ without eliminating the parameter, Find $\large\frac{dy}{dx}$

$\begin{array}{1 1} -\large\frac{\cos\theta-2\cos \theta}{\sin\theta-2\sin \theta} \\ \large\frac{\cos\theta-2\cos 2\theta}{\sin\theta-2\sin 2\theta} \\ -\large\frac{\cos\theta-2\cos 2\theta}{\sin\theta-2\sin 2\theta} \\ -\large\frac{\cos\theta-2\cos 3\theta}{\sin\theta-2\sin 3\theta} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • By chain rule we have $\large\frac{dy}{dx}=\frac{dy}{d\theta}$$\times\large\frac{d\theta}{dx}$
Step 1:
$x=\cos\theta-\cos 2\theta$
Differentiating with respect to $\theta$
$\large\frac{dx}{d\theta}$$=-\sin\theta-(-\sin 2\theta).2$
$\quad\;=-\sin\theta+\sin 2\theta.2$
$\quad\;=-\sin\theta+2\sin 2\theta$
$f'(\theta)=-\sin\theta+2\sin 2\theta$
Step 2:
$y=\sin\theta-\sin 2\theta$
$\large\frac{dy}{d\theta}$$=\cos\theta-(\cos 2\theta).2$
$\quad\;=\cos\theta-2\cos 2\theta$
$g'(\theta)=\cos\theta-2\cos 2\theta$
Step 3:
$\quad\;=\large\frac{\cos\theta-2\cos 2\theta}{-\sin\theta+2\sin 2\theta}$
$\quad\;=-\large\frac{\cos\theta-2\cos 2\theta}{\sin\theta-2\sin 2\theta}$
answered May 10, 2013 by sreemathi.v
edited May 10, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App