logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Matrices
0 votes

If $A=\begin{bmatrix}2 & sec^{-1}x\\-1 & cosec^{-1} x \end{bmatrix}$ is a singular matrix then find the value of $x$

$\begin{array}{1 1} 0 \\ -1 \\ 1 \\ \sqrt 2\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • If a matrix is singular then its determinant is zero.
  • $cosec^{-1}x+sec^{-1}x=\large\frac{\pi}{2}$
Given: $A=\begin{bmatrix}2 & sec^{-1}x\\-1 & cosec^{-1} x \end{bmatrix}$ is a singular matrix
$\Rightarrow\:|A|=2cosec^{-1}x+sec^{-1}x=0$
$\Rightarrow\:cosec^{-1}x+cosec^{-1}x+sec^{-1}x=0$
We know that $ cosec^{-1}x+sec^{-1}x=\large\frac{\pi}{2}$
$\Rightarrow\:cosec^{-1}x+\large\frac{\pi}{2}$$=0$
$\Rightarrow\:cosec^{-1}x=-\large\frac{\pi}{2}$
or $x=-1$
answered Feb 6, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...