Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

True or False: The angle between the planes $\overrightarrow{r}.(2\hat i-3\hat j+\hat k)=1$ and $\overrightarrow{r}.(\hat i- j)=4$ is $\cos^{-1}\Large \frac{-5}{\sqrt {58}}.$

$\begin{array}{1 1}False \\ True \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Angle between two planes
  • $ \theta= \cos ^{-1}\bigg[ \large\frac{\overrightarrow n_1. \overrightarrow n_2}{|\overrightarrow n_1|.|\overrightarrow n_2|} \bigg]$
Equation of the plane $P_1= \overrightarrow{r}.(2\hat i-3\hat j+\hat k)=1$
Equation of the plane $P_2= \overrightarrow{r}.(\hat i-\hat j)=4$
Angle between the two plane is given by
$ \theta= \cos ^{-1} \bigg[ \large\frac{\overrightarrow n_1. \overrightarrow n_2}{|\overrightarrow n_1|.|\overrightarrow n_2|} \bigg]$
Here $\overrightarrow{n_1}=2 \hat i-3\hat j+\hat k$
$|\overrightarrow{n_1}|=\sqrt {2^2+(-3)^2+1^2}$
$\qquad=\sqrt {4+9+1}$
$\qquad=\sqrt {14}$
$\overrightarrow{n_2}= \hat i-\hat j$
$|\overrightarrow{n_2}|=\sqrt {1^2+(-1)^2}$
$\qquad=\sqrt {2}$
Now substituting the values we get,
$\cos \theta=\large\frac{(2 \hat i-3\hat j+\hat k).( \hat i-\hat j)}{\sqrt {14} \sqrt {2}}$
Applying the dot product we get,
$\cos \theta=\large\frac{2+3}{\sqrt {28}}$
$\cos \theta=\large\frac{5}{2 \sqrt {7}}$
Hence the statement is $False$
answered Jun 13, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App