Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Two point charges $\;q_{1}=3\times10^{-6}\;C\;$ and $\;q_{2}=5\times10^{-6}\;C\;$ are located at $\;(3 , 5 ,1)\;$ and $\;(1 , 3 , 2)\;m$ . Find the force on $\;q_{1}\;$ due to $\;q_{2}\;.$

$(a)\;5\times10^{-3}\;(2 \hat{i}+2 \hat{j}-\hat{k})\qquad(b)\;5\times10^{-4}\;(2 \hat{i}+2 \hat{j}-\hat{k})\qquad(c)\;5\times10^{-3}\;(2 \hat{i}-2 \hat{j}+\hat{k})\qquad(d)\;5\times10^{-3}\;(2 \hat{i}+2 \hat{j}+\hat{k})$

Can you answer this question?

1 Answer

0 votes
Answer : (a) $\;5\times10^{-3}\;(2 \hat{i}+2 \hat{j}-\hat{k})$
Explanation : $\overrightarrow{F}_{12}=\large\frac{kq_{1}q_{2}\;(\overrightarrow{r}_{1}-\overrightarrow{r}_{2})}{|\overrightarrow{r}_{1}-\overrightarrow{r}_{2}|^3}$
$\overrightarrow{F}_{12}=\large\frac{9\times10^9\times3\times5\times10^{-12}\;(2 \hat{i}+2 \hat{j}-\hat{k})}{27}$
$\overrightarrow{F}_{12}=10^{-2} \hat{i} + 10^{-2} \hat{j}-5\times10^{-3}\;\hat{k}\;.$


answered Jan 30, 2014 by yamini.v
edited Aug 11, 2014 by thagee.vedartham

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App