$(a)\;4\;\mu s\qquad(b)\;2\;\mu s\qquad(c)\;2 \sqrt{2}\;\mu s\qquad(d)\;4 \sqrt{2}\;\mu s$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Answer : (a) $\;4\;\mu s$

Explanation : $\;F= \large\frac{\sigma\; q}{\in_{0}}$

$a= \large\frac{\sigma\; q}{\;m_{p}\in_{0}}$

$\large\frac{1}{2}\;at^2 = l\quad\;=>\;t\sqrt{\large\frac{2 l m_{p} \in_{0}}{\sigma\;q}}$

$t=\sqrt{\large\frac{2\times0.1\times1.675\times10^{-27}\times8.84\times10^{-12}}{2.21\times10^{-9}\times1.6\times10^{-19}}}$

$t\;\approx\;4\times10^{-6}\;s$

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...