logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

In a certain region V= $\;Axy+Bx^2+Cy\;$ where A , B , C are constants . Find electric field as a function of $\;(x ,y ,z)\;.$

$(a)\;(-Ay-2Bx)\;\hat{i}+(Ax+c)\;\hat{j}\qquad(b)\;(Ay+2Bx)\;\hat{i}+c\;\hat{j}\qquad(c)\;(Ay+2Bx)\;\hat{(-i)}+(Ax+c)\;\hat{(-j)}\qquad(d)\;None$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) $\;(Ay+2Bx)\;\hat{(-i)}+(Ax+c)\;\hat{(-j)}$
Explanation : $\;\overrightarrow{E}=-(\large\frac{\partial V}{\partial x}\;\hat{i}+\large\frac{\partial V}{\partial y}\;\hat{j}+\large\frac{\partial V}{\partial z}\;\hat{k})$
$\overrightarrow{E} = -(Ay+2Bx)\;\hat{i} + \;-(Ax+C) \;\hat{j} + 0 \;\hat{k}$
$\overrightarrow{E} = -(Ay+2Bx)\;\hat{i} -(Ax+C) \;\hat{j} $
answered Jan 30, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...