logo

Ask Questions, Get Answers

X
 
Home  >>  CBSE XII  >>  Math  >>  Determinants

If $A= \; \begin{bmatrix} 1& 0 &0 \\ 2 & 3 & 4\\ 0&1 & 2 \end{bmatrix}$, then the value of $A.(Adj\:A)$ is?

1 Answer

Toolbox:
  • For a matrix $A$ which is non singular,$A^{-1}=\large\frac{1}{|A|}$$(Adj\:A)$
  • $A.A^{-1}=I$
Given: $A= \; \begin{bmatrix} 1& 0 &0 \\ 2 & 3 & 4\\ 0&1 & 2 \end{bmatrix}$
$\Rightarrow det (A)=|A| = (1) \times (2 \times 3 - 1\times 4) + (0) \times (2 \times 2- 0\times 4)+(0)\times ( 2 \times 1-0 \times 3)$
$=6-4=2$
$\Rightarrow\:A$ is non singular.
We know that for a matrix $A$ which is non singular,$A^{-1}=\large\frac{1}{|A|}$$(Adj\:A)$
$\Rightarrow\:Adj\:A=|A|.A^{-1}$
$\Rightarrow\:A\:(Adj\:A)=A.A^{-1}.|A|$
$=I.|A|=2I$
answered Jan 30, 2014 by rvidyagovindarajan_1
edited Jan 30, 2014 by rvidyagovindarajan_1
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X