Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

By using the properties of definite integrals,evaluate the integral $ \int\limits_{-10}^{10}\mid x+2 \mid\;dx$

Can you answer this question?

1 Answer

0 votes
  • $ \int \limits_a^bf(x)dx=F(b)-F(a)$
  • $ f(x)=|x+a|=f(x)= \left\{ \begin{array}{1 1} x+a\;&when\;x+a \geq 0 & \quad x\geq -a \\ -(x+a)\;&when\;x+a <0 & \quad x<-0 \end{array} \right. $
  • $\int \limits_a^cf(x)dx=\int \limits_a^b f(x)dx+\int \limits_b^cf(x)dx$
Given $I=\int\limits_{-10}^{10}\mid x+2 \mid\;dx$
$|x+2|=f(x)= \left\{ \begin{array}{1 1} x+2\;&when\;(x+2) \geq 0 & \quad x\geq -2 \\ -(x+2)\;&when\;(x+2) <0 & \quad x<-2 \end{array}\right. $
Hence the limits are -10 to -2 and -2 to 10
Hence $\int\limits_{-10}^{10}\mid x+2 \mid\;dx=\int\limits_{-10}^{-2}\mid x+2 \mid\;dx+\int\limits_{-2}^{10}\mid x+2 \mid\;dx$
On integrating we get,
On applying limits,
$-\bigg[\bigg(\frac{(-2)^2}{2}+2(-2)\bigg)-\bigg(\frac{(-10)^2}{2}+2 \times (-10)\bigg)\bigg]$
$+\bigg[\bigg(\frac{10^2}{2}+2 \times 10 \bigg)-\bigg(\frac{(-2)^2}{2}-2 \times (-2)\bigg)\bigg]$
$=\bigg\{-\bigg[\frac{4}{2}-4-\frac{100}{2}+20\bigg]\bigg\}+\bigg[\frac{100}{2}+20-\frac{4}{2}+4 \bigg]$
Hence $I=\int\limits_{-10}^{10}\mid x+2 \mid\;dx=104$
answered Jan 31, 2014 by balaji
edited Jan 31, 2014 by yamini.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App