logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Statistics
0 votes

The standard deviation of $n$ observations $x_1, x_2, ....x_n$ is 2. If $ \sum_{i=1}^n x_i=20$ and $ \sum_{i=1}^n x_i^2=100$ then $n$ is $i=1$

$\begin {array} {1 1} (A)\;10 \: or \: 20 & \quad (B)\;5 \: or \: 10 \\ (C)\;5 \: or \: 20 & \quad (D)\;5 \: or \: 15 \end {array}$

Can you answer this question?
 
 

1 Answer

0 votes
We know SD = $ \sqrt{ \large\frac{\Sigma x_i^2}{n} - \bigg( \large\frac{ \Sigma x_i}{n} \bigg)^2}$
$ \therefore 2 = \sqrt{ \large\frac{100}{n} - \bigg( \large\frac{20}{n} \bigg)^2}$
$ =\sqrt{ \large\frac{100}{n}-\large\frac{400}{n^2}}$
$ \Rightarrow 4 = \large\frac{100}{n} $ $ - \large\frac{400}{n^2}$
$ n^2-25n+100=0$
$ n = 20, 5$
Ans : (C)
answered Jan 31, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...