logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Statistics
0 votes

The two variates $x$ and $y$ are uncorrelated and have standard deviation $ \sigma_x$ and $ \sigma_y$ respectively, the correlation coefficient between $x+y\: and \: x-y$ is

$\begin {array} {1 1} (A)\;\large\frac{\sigma_x \sigma_y}{\sigma_x^2+\sigma_y^2} & \quad (B)\;\large\frac{1}{2}\bigg( \large\frac{1}{\sigma_x}+\large\frac{1}{\sigma_y} \bigg) \\ (C)\;\large\frac{\sigma_x^2-\sigma_y^2}{\sigma_x^2+\sigma_y^2} & \quad (D)\;None \: of \: these \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
Let $ u = x+y\: \: \: v = x-y$
$ \therefore \overline u = \overline x+ \overline y\: \: \: \: \: \: \: \: \: \overline v= \overline x- \overline y$
$cov (u,v) = E\{(u-\overline u)\: (v-\overline v)\}$
$ = E \{ (x-\overline x)+(y-\overline y) \}.\{ (x-\overline x)-(y-\overline y) \}$
$ = E \{ ( x-\overline x)^2-(y-\overline y)^2 \}$
$ = \sigma_x^2- \sigma_y^2$
var $(u) = E(u-\overline u)^2$
$ = E \{( x-\overline x)+(y-\overline y) \}^2$
$ \sigma_x^2+\sigma_y^2$
(Since $ x\: and \: y$ are uncorrelated and so $ E ( x-\overline x)\: (y-\overline y)=0$)
Similarly var $(v) = \sigma_x^2+\sigma_y^2$
Thus Correlation coefficient=$ r(u,v) = \large\frac{cov(u,v)}{\sigma_u \sigma_v}$
$ = \large\frac{\sigma_x^2-\sigma_y^2}{\sigma_x^2+\sigma_y^2}$
Hence Ans : (C)
answered Jan 31, 2014 by thanvigandhi_1
edited Mar 26, 2014 by rvidyagovindarajan_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...