logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Statistics

If the two lines of regression are $ 5x+3y=55$ and $ 7x+y=45$ then find the correlation coefficient between $x$ and $y$

$\begin {array} {1 1} (A)\;-\sqrt{\large\frac{5}{21}} & \quad (B)\;\sqrt{\large\frac{5}{21}} \\ (C)\;\large\frac{5}{21} & \quad (D)\;None \: of \: these \end {array}$

 

1 Answer

$5x+3y=55$............(i)
$7x+y=45$............(ii)
If we regard (i) as line of regression of $y$ on $x$ and (ii) that of $x$ on $y$ then
$ b_{yx} =$ Slope of (i)
$ = -\large\frac{5}{3}$
$ b_{xy} = \large\frac{1}{slope \: of \: (ii)}$
$ = -\large\frac{1}{7}$
$ r = -\sqrt{b_{yx}+b_{xy}}$
$ = -\sqrt{\large\frac{5}{3} \times \large\frac{1}{7}}$
$ = -\sqrt{\large\frac{5}{21}}$
answered Jan 31, 2014 by thanvigandhi_1
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X