logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Statistics
0 votes

For $a$ bivariate distribution $(x,y)$ if $ \Sigma x = 50 \: \Sigma y = 60 \: \Sigma xy = 350 \: \overline x = 5\: \overline y = 6 \: var \: x=4\: var \: y=9\: then \: r(x,y)=$

$\begin {array} {1 1} (A)\;\large\frac{5}{6} & \quad (B)\;\large\frac{5}{36} \\ (C)\;\large\frac{11}{3} & \quad (D)\;\large\frac{11}{18} \end {array}$

 

Can you answer this question?
 
 

1 Answer

0 votes
$ \overline x = \large\frac{ \Sigma x}{n}\: \: \: \: \: \: \: \: \: \: 5=\large\frac{50}{n}$
$ n = 10$
$ cov (x,y) = \large\frac{1}{n} \Sigma xy - \overline x \overline y$
$ = \large\frac{1}{1\not{0}} $ $(35\not0)-(5).(6)$
$ = 35-30$
$ = 5$
$ r= \large\frac{cov(x,y)}{\sigma_x \sigma_y}$
$ = \large\frac{5}{2 \times 3}$
$ = \large\frac{5}{6}$
Ans : (A)
answered Feb 1, 2014 by thanvigandhi_1
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...