Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Linear Programming
0 votes

Corner points of the feasible region for an LPP are $(0,2)(3,0),(6,0),(6,8) and (0,5)$.

Let F=4x+6y be the objective function . The minimum value of F occurs at\[\begin{array}{1 1}(A)\;(0,2)\;only \\ (B)\;(3,0)\;only\\(C)\;the\;mid\;point\;of\;the\;line\;segment\;joining\;the\;points\;(0,2) \;and\;(3,0)\;only\\(D)\;any\;point\;on\;the\;line\;segment\;joining\;the\;points\;(0,2) \;and\;(3,0)\end{array}\]

Can you answer this question?

1 Answer

0 votes
  • Let $R$ be the feasible region for a linear programming problem and let $z=ax+by$ be the objective function.When $z$ has an optimum value (maximum or minimum),where variables $x$ and $y$ are subject to constraints described by linear inequalities,this optimum value must occur at a corner point of the feasible region.
  • If R is bounded then the objective function Z has both a maximum and minimum value on R and each of these occur at corner points of R
Step 1:
The corner points are $(0,2),(3,0),(6,0)$ and $(0,5)$
The objective function $F=4x+6y$
At the points $(x,y)$ the objective function subject to $F=4x+6y$
Step 2:
At $(0,2)$ the objective function $F=4x+6y\Rightarrow 4\times 0+6\times 2=12$
At $(3,0)$ the objective function $F=4x+6y\Rightarrow 4\times 3+6\times 0=12$
At $(6,0)$ the objective function $F=4x+6y\Rightarrow 4\times 6+6\times 0=24$
At $(6,8)$ the objective function $F=4x+6y\Rightarrow 4\times 6+6\times 8=72$
At $(0,5)$ the objective function $F=4x+6y\Rightarrow 4\times 0+6\times 5=30$
Step 3:
The minimum value of the objective function is 12 and this occurs at both the point $(0,2)$ and $(3,0)$
Hence the minimum value of $F$ occurs at any point on the line segment joining the points $(0,2)$ and $(3,0)$
The correct option is $D$
answered Aug 27, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App