$(a)\;\alpha\;l^2\qquad(b)\;\beta\;l^2\qquad(c)\;(\alpha+\beta)\;l^2\qquad(d)\;\large\frac{\alpha+\beta}{2}\;l^2$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Answer : (a) $\;\alpha\;l^2$

Explanation : A square are of side l parallel to y - z plane in vector form can be written as

$\overrightarrow{S}=l^2\;\hat{i}$

$\overrightarrow{E}=\alpha \hat{i}+\beta \hat{j}$

$\phi=\overrightarrow{E}\;.\overrightarrow{S}$

$\phi=(\alpha \hat{i}+\beta\hat{j})\;.(l^2\;.\hat{i})$

$\phi=\alpha\;l^2\;.$

Ask Question

Take Test

x

JEE MAIN, CBSE, AIPMT Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...