Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Given $y(0) =2000$ and $\large\frac{dy}{dx} =3200-20y^2$ then find the value of $\lim _{x \to \infty} y(n)$

$(a)\;does\;not\;exist\\ (b)\;Given\;differential\;equation\; cannot\;have \;y(0)=zero \\ (c)\;-40 \\ (d)\;40 $

Can you answer this question?

1 Answer

0 votes
$\large\frac{dy}{1600-y^2}$$=20\; dx$
$\large\frac{dy}{y^2-1600}$$=-20 dx$
$\int \large\frac{(y+40)-(y-40)}{(y+40)(y-40)}$$dy=\int 20 \times 80 \;dx$
$\log (y- 40) -\log (y+40) =-1600 x+c$
$\log \bigg(\large\frac{y-40}{y+40}\bigg) $$=-1600 x +c$
$\log \bigg(\large\frac{y+40}{y-40}\bigg) $$=1600 x -c$
$y(0) =2000$
$\log \bigg( \large\frac{2040}{1960} \bigg) $$=1600 \times 0-c$
$-c= \log \bigg( \large\frac{51}{49}\bigg)$
$\log \bigg(\large\frac{y+40}{y-40}\bigg) $$=1600 x +\log \bigg(\large\frac{51}{49}\bigg)$
$\log \bigg(\large\frac{49 (y+40)}{51 (y-40)}\bigg)$$=1600x$
for $x +\infty $ L.HS should also $\to \infty$
So, $y-40 \to 0$
$y \to 40$
Hence d is the correct answer.
answered Feb 3, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App