P(A)=\(p(1,1)+p(2,2)\dots+p(6,6)\)
=\(\frac{1}{6}\)x\(\frac{1}{6}\)+\(\frac{1}{6}\)x\(\frac{1}{6}\)..+\(\frac{1}{6}\)x\(\frac{1}{6}\)
=\(\frac{6}{36}\)
=\(\frac{1}{6}\)
P(B)=\(\frac{6}{36}\)
=\(\frac{1}{6}\)
P(A\(\cap\)B)=\(\frac{2}{36}\)
=\(\frac{1}{12}\)
P(A)P(B)=\(\frac{1}{6}\)x\(\frac{1}{6}\)
=\(\frac{1}{36}\)
\(P(A)P(B)\neq P(A\cap\)B)
AandB are not independent