">P(\(\

**Toolbox:**

- P(at least one of A and B occeure)=P(A\(\cup\)B) \(Also\;\overline{A\cup\;B}=\bar{A}\cap\;\bar{B}\)
- P(simultuneous occurance of AandB)=P(A\(\cap\)B) \(Also\;\overline{A\cap\;B}=\bar{A}\cup\;\bar{B}\)

P(A\(\cap\)B)=0.6

P(\(\overline{A\cup\;B}\))=1-0.6=0.4

P(\(\bar{A}\)\(\cap\)\(\bar{B}\))=0.4

P(A\(\cap\)B)=0,3

P(\(\overline{A\cap\;B}\))=1-0.3=0.7

P(\(\bar{A}\cup\)\(\bar{B}\))=P(\(\bar{A}\))+P(\(\bar{B}\))-P(\(\bar{A}\)\(\cap\)\(\bar{B}\))

0.7=P(\(\bar{A}\))+P(\(\bar{B}\))-0.4

P(\(\bar{A}\))+P(\(\bar{B}\))=1.2