logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

A uniform electric field of 100 V/m is directed at $30^{0}$ with the +ve x - axis as shown in figure . Find the potential difference $\;V_{BA}\;$ if OA=2 m and OB= 4 m

$(a)\;100\;(2+\sqrt{3})\qquad(b)\;-100\;(2+\sqrt{3})\qquad(c)\;100\;\sqrt{3}\qquad(d)\;-200$

Can you answer this question?
 
 

1 Answer

0 votes
Answer : (c) $\;100\;\sqrt{3}$
Explanation : Electric field in vector form can be written as ,
$\overrightarrow{E}=(100\;cos\;30^{0}\;\hat{i}+100\;sin\;30^{0}\;\hat{j})$
$\overrightarrow{E}=50\;\sqrt{3}\;\hat{i}+50\;\hat{j}$
$A=(-2m , 0)$
$B=(0 , 4m)$
$V_{BA}=V_{B}-V_{A}=-\int_{A}^{B}\;\overrightarrow{E}\;.\overrightarrow{dr}$
$=-\int_{(-2 ,0)}^{(0,4)}\;(50\;\sqrt{3}\;dx+50\;dy)$
$=-\;[50\;\sqrt{3}\;x+50\;y]_{(-2 ,0)}^{(0 , 4)}$
$=-(100\;\sqrt{3}+200)$
$=-100\;(2+\sqrt{3})\;.$
answered Feb 4, 2014 by yamini.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...