$(a)\;3.62\times10^{-19}J\qquad(b)\;1.623\times 10^{-19}J\qquad(c)\;2.625\times 10^{-19}J\qquad(d)\;4.8\times 10^{-19}J$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

$E_{photon-absorbed}=\large\frac{6.625\times10^{-34}\times3.0\times 10^8}{300\times10{-9}}$

$E_{re-emitted}=\large\frac{6.625\times10^{-34}\times3.0\times 10^8}{496\times10^{-9}}$

$=4.0\times10^{-19}J$

$E_{absorbed} = E_{photon}+E_{photon re-emitted}$

$E_{11} = 6.625\times 10^{-19}-4.0\times 10^{-19}$

$=2.625\times10^{-19}$

Hence the answer is (c)

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...