logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Equation of normal for the parabola $y^2=4ax$ at point $(x_1,y_1)$ is

$\begin{array}{1 1}(a)\;(y-y_1)=-\large\frac{y_1}{2a}\normalsize (x-x_1)\\(b)\;(y-2y_1)=-\large\frac{y_1}{a}\normalsize (x-2x_1)\\(c)\;(y-3y_1)=-\large\frac{y_1}{a}\normalsize (x-x_1)\\(d)\;(y-y_1)=-\large\frac{y_1}{2a^2}\normalsize (x-x_1)\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
For the parabola $y^2=4ax$
Slope of tangent at $(x_1,y_1)$ is
$2yy'=4a$
$y'=\large\frac{4a}{2y}$
$y'=\large\frac{2a}{y}$
$y'=\large\frac{2a}{y_1}$(at point $(x_1,y_1)$
Hence slope of normal is $-\large\frac{-y_1}{2a}$
Equation of normal $(y-y_1)=-\large\frac{-y_1}{2a}$$(x-x_1)$
Hence (a) is the correct answer.
answered Feb 5, 2014 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...