Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Equation of normal for the parabola $y^2=4ax$ at point $(x_1,y_1)$ is

$\begin{array}{1 1}(a)\;(y-y_1)=-\large\frac{y_1}{2a}\normalsize (x-x_1)\\(b)\;(y-2y_1)=-\large\frac{y_1}{a}\normalsize (x-2x_1)\\(c)\;(y-3y_1)=-\large\frac{y_1}{a}\normalsize (x-x_1)\\(d)\;(y-y_1)=-\large\frac{y_1}{2a^2}\normalsize (x-x_1)\end{array}$

Can you answer this question?

1 Answer

0 votes
For the parabola $y^2=4ax$
Slope of tangent at $(x_1,y_1)$ is
$y'=\large\frac{2a}{y_1}$(at point $(x_1,y_1)$
Hence slope of normal is $-\large\frac{-y_1}{2a}$
Equation of normal $(y-y_1)=-\large\frac{-y_1}{2a}$$(x-x_1)$
Hence (a) is the correct answer.
answered Feb 5, 2014 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App