Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The solution of differential equation $(x^2-1) \large\frac{dy}{dx}$$+2xy =\large\frac{1}{x^2-1}$

$(a)\;y(x^2-1)=\log | \frac{1+x}{1-x}|+c \\ (b)\;y(x^2-1)=\log | \frac{1-x}{1+x}|+c \\ (c)\;y(x^2-1)=\log | \frac{x-1}{x+1}|+c \\ (d)\;y(x^2-1)=\frac{1}{2}\log | \frac{x-1}{x+1}|+c$
Can you answer this question?

1 Answer

0 votes
This is linear differential equation
Integrating factor $=e^{\int \large\frac{2x}{(x^2-1)}}$$dx=e^{\log (x^2-1)}=x^2-1$
multiplying both sides of (i) by $I.F =x^2-1$
we get $(x^2-1)\large\frac{dy}{dx}$$+2xy=\large \frac{1}{x^2}$$-1$
$y(x^2-1) -\int\large\frac{1}{x^2-1} dx+c$
=> $y(x^2-1)=\large\frac{1}{2} $$\log |\large\frac{x-1}{x+1}|+c$
Hence d is the correct answer.
answered Feb 5, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App