Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Solution of differential equation $\large\frac{dy}{dx} +\frac{y}{x}$$=x^3 y^5$ is which of the following?

$(a)\;(x-y)^4=-4 \log x +c \\ (b)\;(xy)^{-5} =\frac{5}{6}x^{-2} +c \\ (c)\;(xy)^{-5} =\log x +c \\ (d)\;(xy)^{-4}=-4 \log x +c $

Can you answer this question?

1 Answer

0 votes
$-4y^{-5} \large\frac{dy}{dx} =\large\frac{dv}{dx}$
equation becomes $\large\frac{-1}{4} \times \frac{dv}{dx}+\frac{v}{x}$$=x^3$
$\large\frac{dv}{dx} -\frac{4v}{x}$$=-4x^3$-----(i)
This linear differential equation $I.F= e^{\int \large\frac{4}{x} dx}$
$\qquad= e^{-4 \log x}=\large\frac {1}{x^4}$
Multiplying both sides by (i) by I.F we get
$v. \large\frac{1}{x^4}$$=\int -4x^3. \large\frac{1}{x^4}dx$
$\large\frac {v}{x^4}$$=-4 \log x +c$
$x^4y^{-4}=-4 \log x +c$
Hence d is the correct answer.
answered Feb 5, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App