$(a)\;zero\qquad(b)\;\large\frac{kQ}{d^2}\qquad(c)\;2kQ\;(\large\frac{1}{R}-\large\frac{1}{\sqrt{R^2+d^2}})\qquad(d)\;kQ(\large\frac{1}{R}-\large\frac{1}{\sqrt{R^2+d^2}})$

Answer : (c) $\;2kQ\;(\large\frac{1}{R}-\large\frac{1}{\sqrt{R^2+d^2}})$

Explanation :

Potential at O :

$V_{1}=\large\frac{kQ}{R}-\large\frac{kQ}{\sqrt{R^2+d^2}}$

Potential at $\;O_{1}\;:$

$V_{2}=\large\frac{kQ}{\sqrt{R^2+d^2}}-\large\frac{kQ}{R}$

$V_{1}-V_{2}=2kQ\;(\large\frac{1}{R}-\large\frac{1}{\sqrt{R^2+d^2}})\;.$

Ask Question

Tag:MathPhyChemBioOther

Take Test

...