Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

A drop of liquid evaporates at a rate proportional to its area of surface. If the radius initially is $4\;mm$ and $5$ minutes later, the radius is reduced to $2\; mm$, find radius of drop as a function of time ?

$(a)\;R=\frac{20}{t+5} \\ (b)\;R= \frac{t+5}{20} \\ (c)\;R=\frac{10}{t+5} \\ (d)\;R=\frac{10}{t+4} $

Can you answer this question?

1 Answer

0 votes
According to given condition
$\large\frac{dR}{dt}$$=K ' \times 4 \pi R^2$
$\large\frac{dR}{dt}$$=K' R^2$
$ -\large\frac{1}{R}\bigg]_4^2=k't \bigg]_0^5$
$- \bigg[\large\frac{1}{2} -\frac{1}{4}\bigg]$$=5K^1$
$\large\frac{-1}{R}\bigg]_4^R =-\large\frac{1}{20}$$t\bigg]_0^t$
$-\bigg[\large\frac{1}{R} -\frac{1}{4}\bigg]=\large\frac{-1}{20}$$ \times t$
$\large\frac{1}{R} -\frac{1}{4} =\frac{t}{20}$
$\large\frac{1}{R} =\frac{1}{4}+ \frac{t}{20}$
$\large\frac{1}{R} =\frac{t+5}{20}$
Hence a is the correct answer.
answered Feb 6, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App