Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the equation of parabola whose vertex is (4,2) and focus is (6,2)?

$\begin{array}{1 1}(a)\;(y-3)^2=8(k-4)\\(b)\;(y-2)^2=8(k-4)\\(c)\;(y-2)^2=4(k-4)\\(d)\;(y-2)^2=6(k-4)\end{array}$

1 Answer

Let vertex P(4,2) and focus Q is (6,2)
Slope of PQ=0
Hence axis of parabola parallel to x-axis
The equation is of the form
(h,k) is vertex
Hence equation of parabola is
Hence (b) is the correct answer.
answered Feb 6, 2014 by sreemathi.v

Related questions