Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the centroid of the triangle formed by the feet of the three normal lies on the axis of parabola?

$\begin{array}{1 1}(a)\;(\large\frac{2h-4a}{3},\normalsize 0)\\(b)\;(\large\frac{2h-2a}{3},\normalsize 1)\\(c)\;(\large\frac{3h-4a}{3},\normalsize 3)\\(d)\;(\large\frac{2h+4a}{3},\normalsize 1)\end{array}$

Can you answer this question?

1 Answer

0 votes
If $A(x_1,y_1),B(x_2,y_2)$ and $C(x_3,y_3)$ be vertices of $\Delta ABC$ then its centroid is
Here $y_1+y_2+y_3=0$
So centroid of $\Delta ABC\Rightarrow (\large\frac{x_1+x_2+x_3}{3},$$0)$
Now $\large\frac{x_1+x_2+x_3}{3}=\frac{a}{3}$$(m_1^2+m_2^2+m_3^2)$
$\Rightarrow \large\frac{a}{3}$$[(m_1+m_2+m_3)^2-2(m_1m_2+m_2m_3+m_3m_1)]$
$\Rightarrow \large\frac{a}{3}$$[0-2\times \big(\large\frac{2a-h}{a}\big)]$
$\Rightarrow \large\frac{2h-4a}{3}$
Hence centroid of $\Delta ABC$ is $\big(\large\frac{2h-4a}{3}$$,0)$
Hence (a) is the correct answer.
answered Feb 6, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App