Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

If the normal to a parabola $y^2=4ax$ make an angle $\theta$ with the axis and $\phi$ is the angle it makes when it cut the parabola again find the relation between $\theta$ & $\phi$?

$\begin{array}{1 1}(a)\;\tan \phi=\large\frac{\tan \theta}{2}\\(b)\;\tan \phi=\large\frac{\tan \theta}{4}\\(c)\;\tan 2\phi=\large\frac{\tan \theta}{2}\\(d)\;4\tan \phi=\large\frac{\tan \theta}{2}\end{array}$

Can you answer this question?

1 Answer

0 votes
Let the normal at $P(at_1^2,2at_1)$ be $y=-t_1x+2at_1+at_1^3$
$\therefore \theta=-t_1$=slope of normal -------(1)
It meets the curve again at $\theta$ say $(at_2^2,2at_2)$
Now angle between the normal and parabola =Angle between the normal and tangent at $\theta$
(i.e) $t_2y=x+at_2^2$
If $\phi$ be the angle
$\tan \phi=\large\frac{m_1-m_2}{1+m_1m_2}$
$\Rightarrow \large\frac{-t_1-\Large\frac{1}{t_2}}{1+(-t_1)(\large\frac{1}{t_2})}$
$\Rightarrow \large\frac{-(t_1t_2+1)}{t_2-t_1}$
$\Rightarrow -\large\frac{(-t_1^2-1)}{-2((1+t_1^2)/t_1)}$
$\Rightarrow -\large\frac{-t_1}{2}$
$\tan \phi=\large\frac{\tan \theta}{2}$
Hence (a) is the correct answer.
answered Feb 6, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App