Email
logo

Ask Questions, Get Answers

X
 
Answer
Comment
Share
Q)

Solve : $y' +\tan x.y =\tan x \quad y(\large\frac{\pi}{4})$$=1$

$(a)\;y= e^{\sec ^2 x}\frac{\tan ^2x}{2}+c \\ (b)\;y= e^{\tan ^2 x/2}+c \\ (c)\;y= e^{\sec ^2 x}\frac{\tan ^2x}{4}+c \\ (d)\;y= e^{-\sec ^2 x}\frac{\tan ^2x}{2}+c $

1 Answer

Comment
A)
It is linear equation so
$I_0 f=e^{\int \tan xdx}$
$\qquad= e^{\sec^2 x dx}$
So, $y. e^{\sec^2 x}=\int \tan x . \sec^2 x dx$
$\tan x =t$
$\sec^2 x dx =dt$
$y. e^{\sec^2 x}=\int t dt$
$y. e^{\sec^2 x} =\large\frac{\tan ^2 x}{2}$$+c$
Hence d is the correct answer.
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Continue
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Continue
...