$(a)\;y.x^2=\bigg(\sin ^{-1} x.\frac{x^3}{3} - \bigg(\frac{2}{3}(1-x^2)^{3/2}- 2\sqrt {1-x^2}\bigg)\bigg) \\ (b)\;y.x^2=-4 \bigg(\sin ^{-1} x.\frac{x^3}{3} - \frac{1}{6}\bigg(\frac{2}{3}(1-x^2)^{3/2}- 2\sqrt {1-x^2}\bigg)\bigg)\\ (c)\;y=-4 \bigg(\sin ^{-1} x .\frac{-1}{6} \bigg(\frac{2}{3}(1-x^2)^{3/2}- \sqrt {1-x^2}\bigg)\bigg)\\ (d)\;y=-4 \bigg (x^3. \sin ^{-1} x -\bigg((1-x^2)^{2}{3}-\sqrt {1-x^2}\bigg)\bigg) $