$(a)\;\large\frac{\sigma\;R}{\in_{0}}\qquad(b)\;\large\frac{2\;\sigma\;R}{\in_{0}}\qquad(c)\;zero\qquad(d)\;\large\frac{4\;\sigma\;R}{\in_{0}}$

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

Answer : (c) zero

Explanation :

$V_{A}=\large\frac{k \sigma 4 \pi R^2}{R}-\large\frac{k \sigma 4 \pi(2R)^2}{2R}+\large\frac{k \sigma 4 \pi(3 R)^2}{3R}$

$V_{A}=\large\frac{\sigma R}{\in_{0}}-\large\frac{\sigma 2 R}{\in_{0}}+\large\frac{\sigma 3 R}{\in_{0}}=\large\frac{2 \sigma R}{\in_{0}}$

$V_{C}=\large\frac{k \sigma 4 \pi R^2}{3R}-\large\frac{k \sigma 4 \pi (2R)^2}{3R}+\large\frac{k \sigma 4 \pi (3R)^2}{3R}$

$V_{C}=\large\frac{ \sigma R}{ 3 \in_{0}}-\large\frac{4 \sigma R}{3 \in_{0}}+\large\frac{9 \sigma R}{3 \in_{0}}$

$V_{C}=\large\frac{2 \sigma R}{\in_{0}}$

$V_{A}-V_{C}=0\;.$

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...