Imagine an atom made up of proton and a hypothetical particle of double the mass of electron but having the same charge as the electron . Apply the Bohr's atomic model and consider all possible transitions of this hypothetical particle to the first excited level. The largest wavelength photon that will be emitted has wavelength $\lambda$ (given in terms of the Rydberg constant R for the hydrogen atom) equal to. - Clay6.com, a Free resource for your JEE, AIPMT and Board Exam preparation

Imagine an atom made up of proton and a hypothetical particle of double the mass of electron but having the same charge as the electron . Apply the Bohr's atomic model and consider all possible transitions of this hypothetical particle to the first excited level. The largest wavelength photon that will be emitted has wavelength $\lambda$ (given in terms of the Rydberg constant R for the hydrogen atom) equal to.