logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the length of lactus rectum and end points of lactus rectum for a ellipse $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;\large\frac{2b^2}{a}\\(b)\;\large\frac{b^2}{a}\\(c)\;\large\frac{4b^2}{a}\\(d)\;\large\frac{2a^2}{b}\end{array}$

1 Answer

Latus rectum is a perpendicular line passing through focus hence let the end points be $L(ae,k)$ & $L'(ae,-k)$.
Length of latus rectum LL'=$2k$
$\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$
$\large\frac{a^2e^2}{a^2}+\frac{k^2}{b^2}$$=1$
$k^2=b^2(1-e^2)$
$\;\;\;\;=b^2(\large\frac{b^2}{a^2})$
$b^2=a^2(1-e^2)$
$k=\large\frac{b^2}{a}$
$2k=\large\frac{2b^2}{a}=$$LL'$(length of lactus rectum)
Hence (a) is the correct answer.
answered Feb 7, 2014 by sreemathi.v
edited Sep 28, 2014 by sharmaaparna1
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X