Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find general solution of equation $y'-2y+a=0$ a=fixed

$(a)\;y=ce^{2x}+\frac{a}{2} \\ (b)\;y= e^{3x}+c \\ (c)\;y= e^{2x}+K \\ (d)\;y=e^{-x}+K $

Can you answer this question?

1 Answer

0 votes
$\large\frac{dy}{2y-a}$$=dx$ for $ y \neq \large\frac{a}{2}$
For $y= \large\frac{a}{2}$ we find $\large\frac{dy}{dx}$$=0$
and differential equation is satisfied .
Hence $y= \large\frac{a}{2}$ is solution. Since it does not contain an arbitrary constant so it s not general solution .
$\large\frac{1}{2} $$ \log (2y-a) =x+c_1$
or $2y-a=e^{2x+2C_1}$
$2y-a =Ke^{2x}$
$K= e \pm e^{2x}$ is arbitrary constant
$c =\large\frac{K}{2}$
$y= Ce^{2x}+\large\frac{a}{2}$
Hence a is the correct answer.
answered Feb 7, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App