logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Solve : $y''+e^{2y}(y')^3=0$

$(a)\;y=e^{2x}+c_1 x+c_2 \\ (b)\;x= e^{2y}+c_1y+c_2 \\ (c)\;y=\frac{1}{4}.e^{2x}+c_1x +c_2 \\ (d)\;x=\frac{1}{4} e^{2y}+c_1y +c_2 $
Can you answer this question?
 
 

1 Answer

0 votes
$y'=u$
$\large\frac{d^2y}{dx^2}=\frac{du}{dx}$
$\qquad= \large\frac{du}{dy}. \frac{dy}{dx}$
$\qquad= u. \large\frac{du}{dy}$
$u. \large\frac{du}{dy}$$+e^{2y}y^3=0$
$\large\frac{du}{u^2}$$=-e^{2y}dy$
$\large\frac{-1}{u}=\frac{1}{2} $$ e^{2y}+c_1$
$\large\frac{dx}{dy}=\large\frac{1}{2}. e^{2y}+c_1$
$dx=\bigg( \large\frac{1}{2}. e^{2y}+c_1 \bigg)$$dy$
$x= \large\frac{1}{4} .e^{2y}+c_1y+c_2$
Hence d is the correct answer.
answered Feb 7, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...