Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the length of sub tangent and sub-normal for an ellipse $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;\large\frac{a^2}{x_1}\normalsize -x_1,(1-e^2)x_1\\(b)\;\large\frac{a}{x_1}\normalsize- x_1,(1-e^4)x_1\\(c)\;\large\frac{a^2}{x_1}\normalsize+ x_1,(1+e^2)x_1\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
Equation of tangent at $P(x_1,y_1)$ is
T lies on x-axis
Put $y=0$ in equ(1)
Length of sub-tangent $NT=CT-CN$
$\Rightarrow \large\frac{a^2}{x_1}$$-x_1$
Equation of normal at $P(x_1,y_1)$ to the ellipse $\large\frac{x^2}{a^2}+\frac{y^2}{b^2}$$=1$ is
$G$ lies on x-axis put $y=0$ in (2)
$\Rightarrow x=CG$
Length of normal GN=CN-CG
$\Rightarrow x_1- (x_1-\large\frac{b^2}{a^2}$$x_1)$
$\Rightarrow \large\frac{b^2}{a^2}$$x_1=(1-e^2)x_1$
Hence (a) is the correct answer.
answered Feb 7, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App