Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the second order derivatives of the function $(e^{\large x} \sin 5x)$

$\begin{array}{1 1} e^{\large x}[24\sin 5x-10\cos 5x] \\ e^{\large x}(5\cos 5x-\sin 5x) \\ e^{\large x}[-24\sin 5x+10\cos 5x] \\e^{\large x}(5\cos 5x+\sin 5x)\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $y=f(x)$
  • $\large\frac{dy}{dx}$$=f'(x)$
  • $\large\frac{d^2y}{dx^2}=\frac{d}{dx}\big(\frac{dy}{dx}\big)$
  • $\large\frac{d}{dx}$$(e^{\large x})=e^{\large x}$
Step 1:
$y=e^{\large x}\sin 5x$
Differentiating with respect to $x$
$\large\frac{dy}{dx}$$=e^{\large x}\large\frac{d}{dx}$$\sin 5x+\sin 5x.e^{\large x}.$
$\quad\;=e^{\large x}\cos 5x.5+\sin 5x.e^{\large x}$
$\quad\;=e^{\large x}(5\cos 5x+\sin 5x)$
Step 2:
$\large\frac{d^2y}{dx^2}$$=e^{\large x}.\large\frac{d}{dx}$$(5\cos 5x+\sin 5x)+\large\frac{d}{dx}$$(e^{\large x})$$.5\cos 5x+\sin 5x$
$\quad\;=e^{\large x}[-5.\sin 5x.5+\cos 5x.5]+[5\cos 5x+\sin 5x].e^{\large x}$
$\quad\;=e^{\large x}[-25.\sin 5x+5\cos 5x]+e^{\large x}[5\cos 5x+\sin 5x]$
$\quad\;=e^{\large x}[-25\sin 5x+5\cos 5x+5\cos 5x+\sin 5x]$
$\quad\;=e^{\large x}[-24\sin 5x+10\cos 5x]$
answered May 10, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App