logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

For what value of $\lambda$ does the line $y=2x+\lambda$ touches the hyperbola $16x^2-9y^2=144$?

$\begin{array}{1 1}(a)\;\pm 2\sqrt 5\\(b)\;\pm 2\sqrt 7\\(c)\;\pm 3\sqrt 5\\(d)\;\pm 4\sqrt 5\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Equation of hyperbola is $\large\frac{x^2}{9}-\frac{y^2}{16}$$=1$
Hence $a^2=9,b^2=16$
Comparing the line $y=2x+\lambda$ with $y=mx+c$
$m=2,c=\lambda$
If the line $y=2x+\lambda$ touches the hyperbola $\large\frac{x^2}{9}-\frac{y^2}{16}$$=1$ if $c^2=a^2m^2-b^2$
$\lambda^2=9(2)^2-16=20$
$\lambda=\pm 2\sqrt 5$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...