$(a)\;\geq\sqrt{\large\frac{h}{4\pi m^2}}\qquad(b)\;\geq\sqrt{\large\frac{4\lambda}{4\pi m}}\qquad(c)\;\geq\sqrt{\large\frac{h}{2m^2}}\qquad(d)\;Either\; of\; these$

$\bigtriangleup u = \bigtriangleup p$

$\therefore (\bigtriangleup p)^2 \geq \large\frac{h}{4\pi}$

$(\bigtriangleup um)^2 \geq \large\frac{h}{4\pi}$

$\therefore \bigtriangleup u \geq \sqrt{\large\frac{h}{4\pi m^2}} \geq \sqrt{\large\frac{4\lambda}{4\pi m}}\geq \sqrt{\large\frac{h}{2m^2}}$

Since $\sqrt h = \large\frac{h}{2\pi} and \lambda = \large\frac{h}{mu}$

Hence the anwer is (d)

Ask Question

Tag:MathPhyChemBioOther

Take Test

...