Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the equation of tangent for the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ in parametric form?

$\begin{array}{1 1}(a)\;\large\frac{x\sec\theta}{a^2}+\frac{y\tan \theta}{b}\normalsize =1\\(b)\;\large\frac{x\sec\theta}{a}-\frac{y\tan \theta}{b}\normalsize =1\\(c)\;\large\frac{x\tan\theta}{a^2}+\frac{y\sec \theta}{b}\normalsize =1\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
We know the parametric co-ordinate of the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ is $(a\sec\theta,b\tan\theta)$
And also we know
Equation of tangent for the hyperbola is $\large\frac{xx_1}{a^2}-\frac{yy_1}{b^2}$$=1$
Replacing $(x_1,y_1)$ by $(a\sec\theta,b\tan \theta)$
$\large\frac{x\sec\theta}{a}-\frac{y\tan \theta}{b}\normalsize =1$
Hence (b) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App