Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the equation of chord of contact for hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;\large\frac{xx_1}{a^2}-\frac{yy_1}{b^2}\normalsize =1\\(b)\;\large\frac{xx_1}{a^2}+\frac{yy_1}{b^2}\normalsize =1\\(c)\;\large\frac{xx_1}{b^2}-\frac{yy_1}{a^2}\normalsize =1\\(d)\;\text{None of these}\end{array}$

1 Answer

If the tangent from a point $P(x_1,y_1)$ to hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ touch the hyperbola at $Q(x',y')$ and $R(x",y")$ then
Equation of tangent PQ and PR are
Since (1) & (2) pass through $P(x_1,y_1)$ then
Hence it is clear that $Q(x',y')$ and $R(x",y")$ lie on
$\large\frac{xx_1}{a^2}-\frac{yy_1}{b^2}\normalsize =1$
Which is the equation of chord of contact QR.
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions