logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the equation of chord of contact for hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;\large\frac{xx_1}{a^2}-\frac{yy_1}{b^2}\normalsize =1\\(b)\;\large\frac{xx_1}{a^2}+\frac{yy_1}{b^2}\normalsize =1\\(c)\;\large\frac{xx_1}{b^2}-\frac{yy_1}{a^2}\normalsize =1\\(d)\;\text{None of these}\end{array}$

1 Answer

If the tangent from a point $P(x_1,y_1)$ to hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ touch the hyperbola at $Q(x',y')$ and $R(x",y")$ then
Equation of tangent PQ and PR are
$\large\frac{xx'}{a^2}-\frac{yy'}{b^2}$$=1$-----(1)
$\large\frac{xx"}{a^2}-\frac{yy"}{b^2}$$=1$-----(2)
Since (1) & (2) pass through $P(x_1,y_1)$ then
$\large\frac{x'x_1}{a^2}-\frac{y'y_1}{b^2}$$=1$
$\large\frac{x"x_1}{a^2}-\frac{y"y_1}{b^2}$$=1$
Hence it is clear that $Q(x',y')$ and $R(x",y")$ lie on
$\large\frac{xx_1}{a^2}-\frac{yy_1}{b^2}\normalsize =1$
Which is the equation of chord of contact QR.
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v
 

Related questions

Download clay6 mobile appDownload clay6 mobile app
...
X