Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the locus of intersection of two perpendicular tangent to the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;h^2+k^2=a^2-b^2\\(b)\;h^2+k^2=a^2+b^2\\(c)\;h^2-k^2=a^2-b^2\\(d)\;k^2-h^2=a^2-b^2\end{array}$

Can you answer this question?

1 Answer

0 votes
Let any tangent in terms of slope of hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ is
It passes through (h,k)
Slope of tangent be $m_1$ & $m_2$
$-1=\large\frac{k^2+b^2}{h^2-a^2}$(tangent are $\perp$)
Hence $h^2+k^2=a^2-b^2$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App