Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the equation of asymptotes for the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;\large\frac{x}{a}\pm \frac{y}{b}\normalsize=0\\(b)\;\large\frac{x^2}{a}\pm \frac{y^2}{b}\normalsize=0\\(c)\;\large\frac{x}{b}\pm \frac{y}{a}\normalsize=0\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
Let $y=mx+c$ be an asymptote of the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$------(1)
Substituting y in (1) we get
If the $y=mx+c$ is an asymptote to the given hyperbola then it touches the hyperbola at infinity,so both roots of (2) is infinity
Hence $a^2m^2-b^2=0$ and $-2a^2mc=0$
$m=\pm\large\frac{b}{a}$ and $c=0$
Substituting the value of m and c in $y=mx+c$ we get,
$y=\pm \large\frac{b}{a}$$x$
$\large\frac{x}{a}\pm \frac{y}{b}\normalsize=0$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App