Ask Questions, Get Answers

Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the equation of a diameter bisecting a system of parallel chords of slope m of the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;y=\large\frac{b^2x}{a^2m}\\(b)\;y=\large\frac{a^2x}{b^2m}\\(c)\;y=\large\frac{bx}{am}\\(d)\;\text{None of these}\end{array}$

1 Answer

Let $y=mx+c$ be a system of a parallel chords to $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ for different chords
(c varies)
Let $(x_1,y_1)$ & $(x_2,y_2)$ be the extremities of chord and (h,k) be its middle point.
The $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ and $y=mx+c$
$x_1$ & $x_2$ be the roots
$(h,k)$ is middle point hence
$(h,k)$ lies on $y=mx+c$
Hence $c=k-mh$
Hence $y=\large\frac{b^2x}{a^2m}$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions