Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the equation of a diameter bisecting a system of parallel chords of slope m of the hyperbola $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$?

$\begin{array}{1 1}(a)\;y=\large\frac{b^2x}{a^2m}\\(b)\;y=\large\frac{a^2x}{b^2m}\\(c)\;y=\large\frac{bx}{am}\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
Let $y=mx+c$ be a system of a parallel chords to $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ for different chords
(c varies)
Let $(x_1,y_1)$ & $(x_2,y_2)$ be the extremities of chord and (h,k) be its middle point.
The $\large\frac{x^2}{a^2}-\frac{y^2}{b^2}$$=1$ and $y=mx+c$
$x_1$ & $x_2$ be the roots
$(h,k)$ is middle point hence
$(h,k)$ lies on $y=mx+c$
Hence $c=k-mh$
Hence $y=\large\frac{b^2x}{a^2m}$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App