Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the length of sub tangent and sub-normal?(for hyperbola)

$\begin{array}{1 1}(a)\;x_1-\large\frac{a^2}{x_1},\normalsize (e^2-1)x_1\\(b)\;x_1-\large\frac{a}{x_1},\normalsize (e^3-1)x_1\\(c)\;x_1^2+\large\frac{a^2}{x_1},\normalsize (e-1)x_1\\(d)\;x_1+\large\frac{a^2}{x_1},\normalsize (e^2+1)x_1\end{array}$

Can you answer this question?

1 Answer

0 votes
Let the tangent and normal at $4P(x_1,y_1)$ meet the x-axis at $T$ and $C$
Equation of tangent at $P(x_1,y_1)$
T lies on x-axis ,put $y=0$ in (1)
$\Rightarrow x=CT$
Length of subtangent NT=CN-CT
$\Rightarrow x_1-\large\frac{a^2}{x_1}$
Equation of normal at $P(x_1,y_1)$ is
G lies on x-axis ,y=0 in (2)
Length of sub-normal NG=CG-CN
$\Rightarrow \large\frac{(a^2+b^2)x_1}{a^2}$$-x_1$
$\Rightarrow \large\frac{b^2x_1}{a^2}$
$\Rightarrow (e^2-1)x_1$
Hence (a) is the correct answer.
answered Feb 10, 2014 by sreemathi.v
edited Mar 21, 2014 by balaji.thirumalai

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App