Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Application of Integrals
0 votes

Sketch the region and find the area bounded between $y=\sqrt {5-x^2}$ and $y=|x-1|$ using integration.

$\begin{array}{1 1} \large\frac{3\pi+2}{4} \\\large\frac{3\pi-2}{4} \\ \large\frac{5\pi-2}{4} \\ \large\frac{5\pi+2}{4} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • The area enclosed by a curve $y=f(x)$,the $x$-axis and the ordinate $x=a$ and $y=b$ is given by $\int_a^b ydx.$
  • $\int\sqrt{a^2-x^2}dx=\large\frac{x}{2}$$\sqrt{a^2-x^2}+\large\frac{a^2}{2}$$\sin^{-1}\big(\large\frac{x}{a}\big)$$+c.$
  • $sin^{-1}x+cos^{-1}x=\large\frac{\pi}{2}$
Step 1:
Given curves are $y=\sqrt {5-x^2}$...........(i) and $y=|x-1|$.....(ii)
Clearly the equation $y=\sqrt {5-x^2}$ represents a semi circle of radius $\sqrt 5$
and having centre $(0,0)$ which is above $x\:axis$.
Step 2:
$y=|x-1| $ can be written as $y=x-1$........(iii) when $x>1$ and
$y=1-x$...........(iv) when $x<1$
Clearly this represents a broken line broken at $(1,0)$
Step 3
Solving the equations (i) and (iii) we get the point of intersection $B$
Solving $y^2=5-x^2$ and $y=x-1$ we get
$\Rightarrow\:x^2+(x-1)^2=5$ $\Rightarrow\:x=2$ and $y=1$
Similarly by solving the equations (i) and (iv) we get the point $A$
Step 4
From the figure the area of the shaded region is given by
$A=\int _{-1} ^{2}\sqrt {5-x^2}\:dx-\int _{-1} ^{1}(1-x)\:dx-\int _{1}^{2}(x-1)\:dx$
On integrating
$A=\begin{bmatrix}\large\frac{x}{2}\normalsize\sqrt{5-x^2}+\large\frac{5}{2}\normalsize\sin^{-1}\big(\large\frac{x}{\sqrt 5}\big)\end{bmatrix}_{-1}^{2}$-$\begin{bmatrix}x-\large\frac{x^2}{2}\end{bmatrix}_{-1}^1$-$\begin{bmatrix}\large\frac{x^2}{2}-x\end{bmatrix}_{1}^2$
On applying the limits
$1+\large\frac{5}{2}$$sin^{-1}(\large\frac{2}{\sqrt 5}$$)+1-\large\frac{5}{2}$$sin^{-1}(\large\frac{-1}{\sqrt 5}$$)-1+\large\frac{1}{2}$$-1-\large\frac{1}{2}$$-2+2+\large\frac{1}{2}$$-1$
$\Rightarrow\:A=\large\frac{5}{2}$$(sin^{-1}\large\frac{2}{\sqrt 5}$$+sin^{-1}\large\frac{1}{\sqrt 5})-\large\frac{1}{2}$
But $sin^{-1}\large\frac{1}{\sqrt 5}$$=cos^{-1}\large\frac{2}{\sqrt 5}$
$\Rightarrow\:A=\large\frac{5}{2}$$(sin^{-1}\large\frac{2}{\sqrt 5}$$+cos^{-1}\large\frac{2}{\sqrt 5})-\large\frac{1}{2}$
Also we know that $sin^{-1}x+cos^{-1}x=\large\frac{\pi}{2}$
Note: $\large\frac{5\pi-2}{4}$$sq.units = 3.43 sq units.
answered Feb 10, 2014 by rvidyagovindarajan_1
edited Feb 14, 2014 by balaji.thirumalai
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App