Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the area of equilateral triangle inscribed in the circle $x^2+y^2+2gx+2fy+c=0$?

$\begin{array}{1 1}(a)\;\large\frac{3\sqrt 3}{2}\normalsize (g^2-f^2+c)sq.units\\(b)\;\large\frac{3\sqrt 3}{4}\normalsize (g^2+f^2-c)sq.units\\(c)\;\large\frac{\sqrt 3}{2}\normalsize (g^2-f^2+c)sq.units\\(d)\;\large\frac{3\sqrt 5}{2}\normalsize (g^2+f^2+c)sq.units\end{array}$

Can you answer this question?

1 Answer

0 votes
Given circle is $x^2+y^2+2gx+2fy+c=0$------(1)
Let O be the centre and ABC be equilateral triangle inscribed in the circle (1)
In $\Delta OBM$
$\sin 60^{\large\circ}=\large\frac{BM}{OB}$
$BM=OB\sin 60^{\large\circ}=OB\times \large\frac{\sqrt 3}{2}$
$BC=2BM=\sqrt 3OB$
Area of $\Delta ABC=\large\frac{\sqrt 3}{4}$$(BC)^2$
$\Rightarrow \large\frac{\sqrt 3}{4}$$\times 3(OB)^2$
$\Rightarrow \large\frac{3\sqrt 3}{4}\normalsize (g^2+f^2-c)sq.units$
Hence (b) is the correct answer.
answered Feb 11, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App