logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the parametric form of normal for the circle $x^2+y^2=a^2$

$\begin{array}{1 1}(a)\;\large\frac{y}{\sin\theta}=\frac{x}{\cos\theta}\\(b)\;\large\frac{x}{\sin\theta}=\frac{y}{\cos\theta}\\(c)\;\large\frac{y}{\sin^2\theta}=\frac{x}{\cos^2\theta}\\(d)\;\text{None of these}\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Parametric co-ordinates are ($a\cos \theta,a\sin\theta)$
Slope of tangent at ($a\cos \theta,a\sin\theta)$
$2x+2yy'=0$
$2\times a\cos\theta+2\times a\sin \theta y'=0$
$y'=-\large\frac{\cos\theta}{\sin\theta}$
Hence slope of normal is $\large\frac{\sin \theta}{\cos\theta}$
Equation of normal is $(y-a\cos\theta)=\large\frac{\sin \theta}{\cos\theta}$$(x-a\sin \theta)$
$\large\frac{y}{\sin\theta}=\frac{x}{\cos\theta}$
Hence (a) is the correct answer.
answered Feb 11, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...