logo

Ask Questions, Get Answers

X
 
Home  >>  JEEMAIN and NEET  >>  Mathematics  >>  Class11  >>  Coordinate Geometry

Find the parametric form of normal for the circle $x^2+y^2=a^2$

$\begin{array}{1 1}(a)\;\large\frac{y}{\sin\theta}=\frac{x}{\cos\theta}\\(b)\;\large\frac{x}{\sin\theta}=\frac{y}{\cos\theta}\\(c)\;\large\frac{y}{\sin^2\theta}=\frac{x}{\cos^2\theta}\\(d)\;\text{None of these}\end{array}$

Download clay6 mobile app

1 Answer

Parametric co-ordinates are ($a\cos \theta,a\sin\theta)$
Slope of tangent at ($a\cos \theta,a\sin\theta)$
$2x+2yy'=0$
$2\times a\cos\theta+2\times a\sin \theta y'=0$
$y'=-\large\frac{\cos\theta}{\sin\theta}$
Hence slope of normal is $\large\frac{\sin \theta}{\cos\theta}$
Equation of normal is $(y-a\cos\theta)=\large\frac{\sin \theta}{\cos\theta}$$(x-a\sin \theta)$
$\large\frac{y}{\sin\theta}=\frac{x}{\cos\theta}$
Hence (a) is the correct answer.
answered Feb 11, 2014 by sreemathi.v
 

Related questions

...
X