Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the parametric form of normal for the circle $x^2+y^2=a^2$

$\begin{array}{1 1}(a)\;\large\frac{y}{\sin\theta}=\frac{x}{\cos\theta}\\(b)\;\large\frac{x}{\sin\theta}=\frac{y}{\cos\theta}\\(c)\;\large\frac{y}{\sin^2\theta}=\frac{x}{\cos^2\theta}\\(d)\;\text{None of these}\end{array}$

Can you answer this question?

1 Answer

0 votes
Parametric co-ordinates are ($a\cos \theta,a\sin\theta)$
Slope of tangent at ($a\cos \theta,a\sin\theta)$
$2\times a\cos\theta+2\times a\sin \theta y'=0$
Hence slope of normal is $\large\frac{\sin \theta}{\cos\theta}$
Equation of normal is $(y-a\cos\theta)=\large\frac{\sin \theta}{\cos\theta}$$(x-a\sin \theta)$
Hence (a) is the correct answer.
answered Feb 11, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App