logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  JEEMAIN and AIPMT  >>  Mathematics  >>  Class11  >>  Coordinate Geometry
0 votes

Find the equation of chord of contact of tangent drawn from a point $(x_1,y_1)$ to the circle $x^2+y^2=a^2$?

$\begin{array}{1 1}(a)\;xx_1+yy_1=a^2\\(b)\;xx_1-yy_1=a^2\\(c)\;xx_1+yy_1=a\\(d)\;xx_1^2+yy_1^2=a^2\end{array}$

Can you answer this question?
 
 

1 Answer

0 votes
Let $T(x',y')$ and $T'(x'',y'')$ be the points of contacts of tangents drawn from $P(x_1,y_1)$ to $x^2+y^2=a^2$
Then equation of PT and PT' are $xx'+yy'=a^2$
$xx''+yy''=a^2$
Since both tangents pass through $(x_1,y_1)$ then
$x_1x'+y_1y'=a^2$
$x_1x''+y_1y''=a^2$
Point T and T' lie on
$xx_1+yy_1=a^2$
$\therefore$ Equation of chord of contact TT' is $xx_1+yy_1=a^2$
Hence (a) is the correct answer.
answered Feb 11, 2014 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...